A Wideband Magnetoresistive Sensor for Monitoring Dynamic Fault Slip in Laboratory Fault Friction Experiments
نویسنده
چکیده
A non-contact, wideband method of sensing dynamic fault slip in laboratory geophysical experiments employs an inexpensive magnetoresistive sensor, a small neodymium rare earth magnet, and user built application-specific wideband signal conditioning. The magnetoresistive sensor generates a voltage proportional to the changing angles of magnetic flux lines, generated by differential motion or rotation of the near-by magnet, through the sensor. The performance of an array of these sensors compares favorably to other conventional position sensing methods employed at multiple locations along a 2 m long × 0.4 m deep laboratory strike-slip fault. For these magnetoresistive sensors, the lack of resonance signals commonly encountered with cantilever-type position sensor mounting, the wide band response (DC to ≈ 100 kHz) that exceeds the capabilities of many traditional position sensors, and the small space required on the sample, make them attractive options for capturing high speed fault slip measurements in these laboratory experiments. An unanticipated observation of this study is the apparent sensitivity of this sensor to high frequency electomagnetic signals associated with fault rupture and (or) rupture propagation, which may offer new insights into the physics of earthquake faulting.
منابع مشابه
Short slip duration in dynamic rupture in the presence of heterogeneous fault properties
Recent studies of strong motion data consistently show that the risetime (duration of slip at particular locations on the fault) is significantly shorter than the overall rupture duration. The physical explanation for this observation and its implications have become central issues in earthquake source studies. Two classes of mechanisms have been proposed to explain short risetimes. One explana...
متن کاملExperimental and Numerical Model Studies of Frictional Instability Seismic Sources
Stick-slip frictional instability is widely regarded as a viable mechanism for crustal earthquakes, particularly because of the way that it can be incorporated into the notion of earthquakes as episodic unstable slip events along preexisting zones or planes of weakness represented by faults in the Earth. In this thesis, detailed laboratory observations of stick-slip events generated on a simula...
متن کاملNonlinear dynamical triggering of slow slip on simulated earthquake faults with implications to Earth
[1] Among the most fascinating, recent discoveries in seismology are the phenomena of dynamically triggered fault slip, including earthquakes, tremor, slow and silent slip—during which little seismic energy is radiated—and low frequency earthquakes. Dynamic triggering refers to the initiation of fault slip by a transient deformation perturbation, most often in the form of passing seismic waves....
متن کاملThe role of fluid pressure in induced vs. triggered seismicity: insights from rock deformation experiments on carbonates
Fluid overpressure is one of the primary mechanisms for tectonic fault slip, because fluids lubricate the fault and fluid pressure reduces the effective normal stress that holds the fault in place. However, current models of earthquake nucleation, based on rate- and state- friction laws, imply that stable sliding is favoured by the increase of pore fluid pressure. Despite this controversy, curr...
متن کاملAn empirically based steady state friction law and implications for fault stability
Empirically based rate-and-state friction laws (RSFLs) have been proposed to model the dependence of friction forces with slip and time. The relevance of the RSFL for earthquake mechanics is that few constitutive parameters define critical conditions for fault stability (i.e., critical stiffness and frictional fault behavior). However, the RSFLs were determined from experiments conducted at sub...
متن کامل